<listing id="lnlbz"></listing>

      <address id="lnlbz"></address>
      <form id="lnlbz"><th id="lnlbz"><listing id="lnlbz"></listing></th></form>

          <form id="lnlbz"></form>

          <progress id="lnlbz"><nobr id="lnlbz"></nobr></progress>

          <address id="lnlbz"><sub id="lnlbz"><menuitem id="lnlbz"></menuitem></sub></address><listing id="lnlbz"><font id="lnlbz"><cite id="lnlbz"></cite></font></listing><thead id="lnlbz"></thead><rp id="lnlbz"></rp>

          1. 移動端
            訪問手機端
            官微
            訪問官微

            搜索
            取消
            溫馨提示:
            敬愛的用戶,您的瀏覽器版本過低,會導致頁面瀏覽異常,建議您升級瀏覽器版本或更換其他瀏覽器打開。

            人工智能+人=強大的網絡安全

            來源:IT經理網 2017-01-19 09:28:00 網絡安全 人工智能 金融安全
                 來源:IT經理網     2017-01-19 09:28:00

            核心提示既然人和AI都無法單獨在網絡安全維護工作上取得壓倒性成功,為什么不試著把兩者整合起來呢?麻省理工根據這一想法研發的項目,取得了非常令人滿意的效果。

              麻省理工研究出一個新型混雜式系統,基于人工智能(AI)梳理數據,并將當前可疑行為提交給分析人員,能夠檢測85%的攻擊。

            人工智能+人=強大的網絡安全

              既然人和AI都無法單獨在網絡安全維護工作上取得壓倒性成功,為什么不試著把兩者整合起來呢?麻省理工根據這一想法研發的項目,取得了非常令人滿意的效果。

              麻省理工計算機科學和人工智能實驗室的研究人員,與機器學習初創公司PatternEX共同開發了一個稱為“AI2”的平臺,不僅可識別85%的攻擊,還能夠顯著降低誤報。

              研究人員用AI2測試了由數百萬用戶在3個月內產生的36億的數據碎片,并在最近的IEEE大數據安全國際研討會上發布了結果。麻省理工的研究人員表示,AI2如同一個虛擬分析人員,可以在短時間內持續的改進模型,也就意味著能夠極大地提升檢測率,并且非??焖?。

              盡管有人在擔心AI會取代人類的工作,但AI與人類協同工作可以取得更好效果的趨勢越來越明顯。比如上周,人工智能眾包平臺Spare5,發布了一個整合了人類判斷和機器學習的系統,幫助企業理解非結構化數據。

              在網絡安全的世界里,以人為主的技術主要依賴專業人員建立的規則,因此不符合規則的攻擊就被錯過。機器學習則依賴于異常檢測,因此容易誤報,“狼來了”太多,最終導致不被信任。

              建立融合了人類與計算機自動處理的網絡安全系統并不容易,部分的因為手動歸類網絡安全數據的困難。因為具備肉眼識別“DDoS”、“數據泄露”等攻擊行為,需要技能嫻熟的安全專家,但這類人才的匱乏一直都是不爭的事實。因此,使用人工智能來學習并找到最有可能是攻擊的事件,然后交給人類專家去進行識別,是一個結合兩者優勢的辦法。

              在AI2的測試中,一天能發現200個“最異?!钡氖录?,然后交給分析人員判斷,之后系統再把判斷結果整合到模型中,作為下一個數據集的檢測標準。然后不斷循環這個過程,分析人員需要判斷的事件數量將會極大的減少。

              “系統檢測到的攻擊越多,分析人員的反饋就越多,最終會導致未來預測精準率的極大提升。人機交互建立起一個‘美麗’的級聯效應?!?/p> 1024你懂的国产日韩欧美_亚洲欧美色一区二区三区_久久五月丁香合缴情网_99爱之精品网站

            <listing id="lnlbz"></listing>

                <address id="lnlbz"></address>
                <form id="lnlbz"><th id="lnlbz"><listing id="lnlbz"></listing></th></form>

                    <form id="lnlbz"></form>

                    <progress id="lnlbz"><nobr id="lnlbz"></nobr></progress>

                    <address id="lnlbz"><sub id="lnlbz"><menuitem id="lnlbz"></menuitem></sub></address><listing id="lnlbz"><font id="lnlbz"><cite id="lnlbz"></cite></font></listing><thead id="lnlbz"></thead><rp id="lnlbz"></rp>

                      責任編輯:韓希宇

                      免責聲明:

                      中國電子銀行網發布的專欄、投稿以及征文相關文章,其文字、圖片、視頻均來源于作者投稿或轉載自相關作品方;如涉及未經許可使用作品的問題,請您優先聯系我們(聯系郵箱:cebnet@cfca.com.cn,電話:400-880-9888),我們會第一時間核實,謝謝配合。

                      為你推薦

                      猜你喜歡

                      收藏成功

                      確定